Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to atttribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 95% of papers are attributed correctly. Thanks to our method, we are not only able to predict the author of an anonymous work but we also identify weaknesses of the double-blind review process by finding the key aspects that make a paper attributable. We believe that this work gives precious insights into how a submission can remain anonymous in order to support an unbiased double-blind review process.
translated by 谷歌翻译
在本文中,我们解决了使用时间优势控制策略驾驶四极管的问题,这些政策可以在环境变化或遇到未知的干扰时在线重新认可。这个问题具有挑战性,因为考虑到完整的四项动力学的时间优势轨迹在计算上的生成昂贵(分钟或什至数小时)。我们引入了一种基于抽样的方法,用于有效地生成点质量模型的时间优势路径。然后,使用模型预测性轮廓控制方法跟踪这些路径,该方法考虑了完整的四型动力学和单转子推力极限。我们的组合方法能够实时运行,这是能够适应更改的首次最佳方法。我们通过在大门移动的赛车轨道上以超过60 km/h的速度飞行四肢旋转器,展示了我们的方法的适应能力。此外,我们表明我们的在线重新植物方法可以应对由高达68 km/h的强烈干扰。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
Social insects such as ants communicate via pheromones which allows them to coordinate their activity and solve complex tasks as a swarm, e.g. foraging for food. This behaviour was shaped through evolutionary processes. In computational models, self-coordination in swarms has been implemented using probabilistic or action rules to shape the decision of each agent and the collective behaviour. However, manual tuned decision rules may limit the behaviour of the swarm. In this work we investigate the emergence of self-coordination and communication in evolved swarms without defining any rule. We evolve a swarm of agents representing an ant colony. We use a genetic algorithm to optimize a spiking neural network (SNN) which serves as an artificial brain to control the behaviour of each agent. The goal of the colony is to find optimal ways to forage for food in the shortest amount of time. In the evolutionary phase, the ants are able to learn to collaborate by depositing pheromone near food piles and near the nest to guide its cohorts. The pheromone usage is not encoded into the network; instead, this behaviour is established through the optimization procedure. We observe that pheromone-based communication enables the ants to perform better in comparison to colonies where communication did not emerge. We assess the foraging performance by comparing the SNN based model to a rule based system. Our results show that the SNN based model can complete the foraging task more efficiently in a shorter time. Our approach illustrates that even in the absence of pre-defined rules, self coordination via pheromone emerges as a result of the network optimization. This work serves as a proof of concept for the possibility of creating complex applications utilizing SNNs as underlying architectures for multi-agent interactions where communication and self-coordination is desired.
translated by 谷歌翻译
Reinforcement learning is a machine learning approach based on behavioral psychology. It is focused on learning agents that can acquire knowledge and learn to carry out new tasks by interacting with the environment. However, a problem occurs when reinforcement learning is used in critical contexts where the users of the system need to have more information and reliability for the actions executed by an agent. In this regard, explainable reinforcement learning seeks to provide to an agent in training with methods in order to explain its behavior in such a way that users with no experience in machine learning could understand the agent's behavior. One of these is the memory-based explainable reinforcement learning method that is used to compute probabilities of success for each state-action pair using an episodic memory. In this work, we propose to make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks that need to be first addressed to solve a more complex task. The end goal is to verify if it is possible to provide to the agent the ability to explain its actions in the global task as well as in the sub-tasks. The results obtained showed that it is possible to use the memory-based method in hierarchical environments with high-level tasks and compute the probabilities of success to be used as a basis for explaining the agent's behavior.
translated by 谷歌翻译
The primary aim of this research was to find a model that best predicts which fallen angel bonds would either potentially rise up back to investment grade bonds and which ones would fall into bankruptcy. To implement the solution, we thought that the ideal method would be to create an optimal machine learning model that could predict bankruptcies. Among the many machine learning models out there we decided to pick four classification methods: logistic regression, KNN, SVM, and NN. We also utilized an automated methods of Google Cloud's machine learning. The results of our model comparisons showed that the models did not predict bankruptcies very well on the original data set with the exception of Google Cloud's machine learning having a high precision score. However, our over-sampled and feature selection data set did perform very well. This could likely be due to the model being over-fitted to match the narrative of the over-sampled data (as in, it does not accurately predict data outside of this data set quite well). Therefore, we were not able to create a model that we are confident that would predict bankruptcies. However, we were able to find value out of this project in two key ways. The first is that Google Cloud's machine learning model in every metric and in every data set either outperformed or performed on par with the other models. The second is that we found that utilizing feature selection did not reduce predictive power that much. This means that we can reduce the amount of data to collect for future experimentation regarding predicting bankruptcies.
translated by 谷歌翻译
Performing 3D dense captioning and visual grounding requires a common and shared understanding of the underlying multimodal relationships. However, despite some previous attempts on connecting these two related tasks with highly task-specific neural modules, it remains understudied how to explicitly depict their shared nature to learn them simultaneously. In this work, we propose UniT3D, a simple yet effective fully unified transformer-based architecture for jointly solving 3D visual grounding and dense captioning. UniT3D enables learning a strong multimodal representation across the two tasks through a supervised joint pre-training scheme with bidirectional and seq-to-seq objectives. With a generic architecture design, UniT3D allows expanding the pre-training scope to more various training sources such as the synthesized data from 2D prior knowledge to benefit 3D vision-language tasks. Extensive experiments and analysis demonstrate that UniT3D obtains significant gains for 3D dense captioning and visual grounding.
translated by 谷歌翻译
Learning how to navigate among humans in an occluded and spatially constrained indoor environment, is a key ability required to embodied agent to be integrated into our society. In this paper, we propose an end-to-end architecture that exploits Socially-Aware Tasks (referred as to Risk and Social Compass) to inject into a reinforcement learning navigation policy the ability to infer common-sense social behaviors. To this end, our tasks exploit the notion of immediate and future dangers of collision. Furthermore, we propose an evaluation protocol specifically designed for the Social Navigation Task in simulated environments. This is done to capture fine-grained features and characteristics of the policy by analyzing the minimal unit of human-robot spatial interaction, called Encounter. We validate our approach on Gibson4+ and Habitat-Matterport3D datasets.
translated by 谷歌翻译
Knowledge graphs, modeling multi-relational data, improve numerous applications such as question answering or graph logical reasoning. Many graph neural networks for such data emerged recently, often outperforming shallow architectures. However, the design of such multi-relational graph neural networks is ad-hoc, driven mainly by intuition and empirical insights. Up to now, their expressivity, their relation to each other, and their (practical) learning performance is poorly understood. Here, we initiate the study of deriving a more principled understanding of multi-relational graph neural networks. Namely, we investigate the limitations in the expressive power of the well-known Relational GCN and Compositional GCN architectures and shed some light on their practical learning performance. By aligning both architectures with a suitable version of the Weisfeiler-Leman test, we establish under which conditions both models have the same expressive power in distinguishing non-isomorphic (multi-relational) graphs or vertices with different structural roles. Further, by leveraging recent progress in designing expressive graph neural networks, we introduce the $k$-RN architecture that provably overcomes the expressiveness limitations of the above two architectures. Empirically, we confirm our theoretical findings in a vertex classification setting over small and large multi-relational graphs.
translated by 谷歌翻译